Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Calcium ; 106: 102637, 2022 09.
Article in English | MEDLINE | ID: covidwho-1982681

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection and associated coronavirus disease 2019 (COVID-19) has severely impacted human well-being. Although vaccination programs have helped in reducing the severity of the disease, drug regimens for clinical management of COVID-19 are not well recognized yet. It is therefore important to identify and characterize the molecular pathways that could be therapeutically targeted to halt SARS-CoV-2 infection and COVID-19 pathogenesis. SARS-CoV-2 hijacks host cell molecular machinery for its entry, replication and egress. Interestingly, SARS-CoV-2 interacts with host cell Calcium (Ca2+) handling proteins and perturbs Ca2+ homeostasis. We here systematically review the literature that demonstrates a critical role of host cell Ca2+ dynamics in regulating SARS-CoV-2 infection and COVID-19 pathogenesis. Further, we discuss recent studies, which have reported that SARS-CoV-2 acts on several organelle-specific Ca2+ transport mechanisms. Moreover, we deliberate upon the possibility of curtailing SARS-CoV-2 infection by targeting host cell Ca2+ handling machinery. Importantly, we delve into the clinical trials that are examining the efficacy of FDA-approved small molecules acting on Ca2+ handling machinery for the management of COVID-19. Although an important role of host cell Ca2+ signaling in driving SARS-CoV-2 infection has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be important to investigate in detail the signaling cascades that connect perturbed Ca2+ dynamics to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Calcium/metabolism , Humans , SARS-CoV-2
2.
Mol Aspects Med ; 81: 101004, 2021 10.
Article in English | MEDLINE | ID: covidwho-1322255

ABSTRACT

Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.


Subject(s)
COVID-19 , Virus Diseases , Calcium/metabolism , Calcium Signaling , Humans , Pandemics , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL